Theory of Intelligent Design, the best explanation of Origins

This is my personal virtual library, where i collect information, which leads in my view to Intelligent Design as the best explanation of the origin of the physical Universe, life, and biodiversity


You are not connected. Please login or register

Theory of Intelligent Design, the best explanation of Origins » Astronomy & Cosmology and God » FineTuning of the earth

FineTuning of the earth

View previous topic View next topic Go down  Message [Page 1 of 1]

1 FineTuning of the earth on Sat Dec 21, 2013 2:06 pm

Admin


Admin
FineTuning of the earth

http://reasonandscience.heavenforum.org/t1415-finetuning-of-the-earth

Argument by ‘the position of our planet’
1. If the sun where closer to the earth, we would burn up; if farther away we would freeze. 
2. If the earth was not tilted at 23 degrees, the areas near the poles would be dark and cold all year long.
3. If it tilted too much, the seasons would be very extreme for example, on the planet Uranus the winter is 42 years of total darkness!
4. If Earth did not have a large revolving moon, we would have no tides, causing the ocean waters to grow stagnant and produce no oxygen for its creatures.
5. What we see is a planet that is perfectly balanced for our habitation. We see design in the perfect balance.
6. When we see a design we know there is a Designer.
7. The structure of the universe, which is also like a universal clock, can be designed only by a greatest person.
8. That greatest person to design such huge things as a universe can be only God.
10. God exists.

http://reasonandscience.heavenforum.org/t1415-finetuning-of-the-earth#2041

http://kgov.com/fine-tuning-of-the-universe

The Finely Tuned Parameters of the Earth include:
- the Earth's just-right ozone layer filters out ultraviolet radiation and helps mitigate temperature swings
- the Earth's surface gravity strength preventing the atmosphere from losing water to space too rapidly
- the Earth's spin rate on its axis provides for a range of day and nightime temperatures to allow life to thrive
- the atmosphere's composition (oxygen, nitrogren, etc.)
- the atmosphere's pressure enables our lungs to function and water to evaporate at an optimal rate to support life
- the atmosphere's transparency to allow an optimal range of life-giving solar radiation to reach the surface
- the atmosphere's capactity to hold water vaper providing for stable temperature and rainfall ranges  
- efficient life-giving photosynthesis depends on quantum physics, as reported in the journal PNAS
- to prevent runaway consumption of all plant life, no species were created that could metabolize cellulose
- the water molecule's astounding robustness results from finely balanced quantum effects. As reported by New Scientist, "Water's life-giving properties exist on a knife-edge. It turns out that life as we know it relies on a fortuitous, but incredibly delicate, balance of quantum forces. ... We are used to the idea that the cosmos' physical constraints are fine-tuned for life. Now it seems water's quantum forces can be added to this 'just right' list."
- water is an unrivaled solvent; its low viscosity permits the tiniest blood vessels; its high specific heat stabilizes biosphere temperatures; its low thermal conductivity as a solid insulates frozen-over lakes and as a liquid its high conductivity lets organisms distribute heat; its an efficient lubricant; is only mildly reactive; has an anomalous (fish-saving) expansion when it freezes; its high vapor tension keeps moisture in the atmosphere; and it tastes great too!
- carbon atomthe phenomenally harmonious water cycle
- the carbon atom's astounding capabilities. As Cambridge astronomer Fred Hoyle wrote: "Some super-calculating intellect must have designed the properties of the carbon atom, otherwise the chance of my finding such an atom through the blind forces of nature would be utterly minuscule. A common sense interpretation of the facts suggests that a superintellect has monkeyed with physics, as well as with chemistry and biology, and that there are no blind forces worth speaking about in nature. The numbers one calculates from the facts seem to me so overwhelming as to put this conclusion almost beyond question."
- etc., etc., etc.


The distance from the earth to the sun must be just right. Too near and water would evaporate, too far and the earth would be too cold for life. A change of only 2 per cent or so and all life would cease.  Surface gravity and temperature are also critical to within a few per cent for the earth to have a life-sustaining atmosphere – retaining the right mix of gases necessary for life. The planet must rotate at the right speed: too slow and temperature differences between day and night would be too extreme, too fast and wind speeds would be disastrous. And so the list goes on. Astrophysicist Hugh Ross[7] lists many such parameters that have to be fine-tuned for life to be possible, and makes a rough but conservative calculation that the chance of one such planet existing in the universe is about 1 in 1030.

SIZE AND GRAVITY: There is a range for the size of a planet and it gravity which supports life and it is small. A planet the size of Jupiter would have gravity that would crush any life form, and any high order carbon molecules, out of existence.
WATER: Without a sufficient amount of water, life could not exist.
ATMOSPHERE: Not only must a planet have an atmosphere, it must have a certain percentage of certain gasses to permit life. On earth the air we breath is 78% nitrogen, 21% oxygen, and 1% argon and carbon dioxide. Without the 78% nitrogen to “blanket’ the combustion of oxygen, our world would ‘burn up’ from oxidation. Nitrogen inhibits combustion and permits life to flourish. No other planet comes close to this makeup of atmosphere.
OXYGEN: The range of oxygen level in the atmosphere that permits life can be fairly broad, but oxygen is definitely necessary for life.
RARE EARTHS MINERALS: Many chemical processes necessary for life are dependent on elements we call ‘rare earth’ minerals. These only exist as ‘trace’ amounts, but without which life could not continue.
THE SUN: Our sun is an average star in both composition and size. The larger a star is the faster it burns out. It would take longer for life to develop than those larger stars would exist. Smaller stars last longer but do not develop properly to give off the heat and radiation necessary to sustain life on any planets that form. The smaller the star the less likely it will form a planetary system at all.
DISTANCE FROM THE SUN: To have a planet with a surface temperature within the bounds for life, it must be within the ‘biosphere’ of a star, a temperate zone of a given distance from the source of radiation and heat. That would depend on the size of the star. For an average star the size of our sun, that distance would be about 60 to 150 million miles.
RADIOACTIVITY: Without radioactivity, the earth would have cooled to a cold rock 3 billion years ago. Radioactivity is responsible for the volcanism, and heat generated in the interior of the earth. Volcanism is responsible for many of the rare elements we need as well as the oxygen in the air. Most rocky planets have some radioactivity.
DISTANCE AND PLACEMENT FROM THE GALACTIC CENTER: We receive very little of the x-rays and gamma rays given off from the galactic center, that would affect all life and its development on earth. We live on the outer rim of the Milky Way, in a less dense portion of the galaxy, away from the noise, dust, and dangers of the interior.
THE OZONE LAYER: Animal life on land survives because of the ozone layer which shields the ultraviolet rays from reaching the earth’s surface. The ozone layer would never have formed without oxygen reaching a given level of density in the atmosphere. A planet with less oxygen would not have an ozone layer.
VOLCANIC ACTIVITY: Volcanic activity is responsible for bringing heaver elements and gasses to the surface, as well as oxygen. Without this activity, the planet would never have sustained life in the first place.
EARTH’S MAGNETIC FIELD: We are bombarded daily with deadly rays from the sun, but are protected by the earth’s magnetic field.
SEASONS: Because of the earths tilt, we have seasons, and no part of the earth is extremely hot or cold. The seasons have balancing effect of the temperature on the surface and cause the winds and sea currents which we and all life depend on for a temperate climate.

Visible light is also incredibly fine-tuned for life to exist Though visible light is only a tiny fraction of the total electromagnetic spectrum coming from the sun, it happens to be the "most permitted" portion of the sun's spectrum allowed to filter through the our atmosphere. All the other bands of electromagnetic radiation, directly surrounding visible light, happen to be harmful to organic molecules, and are almost completely absorbed by the atmosphere. The tiny amount of harmful UV radiation, which is not visible light, allowed to filter through the atmosphere is needed to keep various populations of single cell bacteria from over-populating the world (Ross; reasons.org). The size of light's wavelengths and the constraints on the size allowable for the protein molecules of organic life, also seem to be tailor-made for each other. This "tailor-made fit" allows photosynthesis, the miracle of sight, and many other things that are necessary for human life. These specific frequencies of light (that enable plants to manufacture food and astronomers to observe the cosmos) represent less than 1 trillionth of a trillionth (10^-24) of the universe's entire range of electromagnetic emissions. Like water, visible light also appears to be of optimal biological utility (Denton; Nature's Destiny).

Distance of the earth from the sun : Malcolm Bowden says, "If it were 5% closer, then the water would boil up from the oceans and if it were just 1% farther away, then the oceans would freeze, and that gives you just some idea of the knife edge we are on."

The carbon dioxide level in atmosphere  If greater: runaway greenhouse effect would develop.  If less: plants would be unable to maintain efficient photosynthesis

Oxygen quantity in atmosphere If greater: plants and hydrocarbons would burn up too easily.  If less: advanced animals would have too little to breathe

Nitrogen quantity in atmosphere If greater: too much buffering of oxygen for advanced animal respiration; too much nitrogen fixation for support of diverse plant species.  
If less: too little buffering of oxygen for advanced animal respiration; too little nitrogen fixation for support of diverse plant species.

Atmospheric pressure: If too small: liquid water will evaporate too easily and condense too infrequently; weather and climate variation would be too extreme; lungs will not function. If too large: liquid water will not evaporate easily enough for land life; insufficient sunlight reaches planetary surface; insufficient uv radiation reaches planetary surface; insufficient climate and weather variation; lungs will not function

Atmospheric transparency:If smaller: insufficient range of wavelengths of solar radiation reaches planetary surface . If greater: too broad a range of wavelengths of solar radiation reaches planetary surface

stratospheric ozone quantity:If smaller: too much uv radiation reaches planet’s surface causing skin cancers and reduced plant growth . If larger: too little uv radiation reaches planet’s surface causing reduced plant growth and insufficient vitamin production for animals

http://pleaseconvinceme.com/2012/evidence-for-god-from-probability/

Requirements Related to Planet Earth

Correct planetary distance from star
Correct inclination of planetary orbit

Correct axis tilt of planet

http://www.astronomytoday.com/astronomy/earthmoon.html

This has had important ramifications for life on the Earth as major and frequent shifts in this obliquity would have led to significant and rapid changes in the Earth's climate due to changes in insolation values at the poles and equator. A similar mechanism has been suggested to explain the apparent contradictions in the climate record of Mars.

The current relatively moderate axial tilt of the Earth ensures that the difference in heating between the poles and equator is sufficient to promote a healthy and diverse range of climatic zones without veering from one extreme to another (e.g. Snowball Earth hypothesis). In particular, the stability of the Earth's axial tilt produced by the Moon, coupled with the break up of the Pangean supercontinent in the late Mesozoic, produced a diverse set of climate zones (with their associated ecological niches) compared with what had gone before during the time of the dinosaurs. This helped set the stage for the rise of the mammals, including Man.




Correct rate of change of axial tilt
Correct period and size of axis tilt variation
Correct planetary rotation period
Correct rate of change in planetary rotation period
Correct planetary revolution period
Correct planetary orbit eccentricity
Correct rate of change of planetary orbital eccentricity
Correct rate of change of planetary inclination
Correct period and size of eccentricity variation
Correct period and size of inclination variation
Correct precession in planet’s rotation
Correct rate of change in planet’s precession
Correct number of moons
Correct mass and distance of moon
Correct surface gravity (escape velocity)
Correct tidal force from sun and moon
Correct magnetic field
Correct rate of change & character of change in magnetic field
Correct albedo (planet reflectivity)
Correct density density of interstellar and interplanetary dust particles in vicinity of life-support planet
Correct reducing strength of planet’s primordial mantle
Correct thickness of crust
Correct timing of birth of continent formation
Correct oceans-to-continents ratio
Correct rate of change in oceans to continents ratio
Correct global distribution of continents
Correct frequency, timing, & extent of ice ages
Correct frequency, timing, & extent of global snowball events
Correct silicate dust annealing by nebular shocks
Correct asteroidal & cometary collision rate
Correct change in asteroidal & cometary collision rates
Correct rate of change in asteroidal & cometary collision rates
Correct mass of body colliding with primordial Earth
Correct timing of body colliding with primordial Earth
Correct location of body’s collision with primordial Earth
Correct position & mass of Jupiter relative to Earth
Correct major planet eccentricities
Correct major planet orbital instabilities
Correct drift and rate of drift in major planet distances
Correct number & distribution of planets
Correct distance of gas giant planets from mean motion resonances
Correct orbital separation distances among inner planets
Correct oxygen quantity in the atmosphere
Correct nitrogen quantity in the atmosphere
Correct carbon monoxide quantity in the atmosphere
Correct chlorine quantity in the atmosphere
Correct aerosol particle density emitted from the forests
Correct cobalt quantity in the earth’s crust
Correct arsenic quantity in the earth’s crust
Correct copper quantity in the earth’s crust
Correct boron quantity in the earth’s crust
Correct cadmium quantity in the earth’s crust
Correct calcium quantity in the earth’s crust
Correct flourine quantity in the earth’s crust
Correct iodine quantity in the earth’s crust
Correct magnesium quantity in the earth’s crust
Correct nickel quantity in crust
Correct phosphorus quantity in crust
Correct potassium quantity in crust
Correct tin quantity in crust
Correct zinc quantity in crust
Correct molybdenum quantity in crust
Correct vanadium quantity in crust
Correct chromium quantity in crust
Correct selenium quantity in crust
Correct iron quantity in oceans
Correct tropospheric ozone quantity
Correct stratospheric ozone quantity
Correct mesospheric ozone quantity
Correct water vapor level in atmosphere
Correct oxygen to nitrogen ratio in atmosphere
Correct quantity of greenhouse gases in atmosphere
Correct quantity of greenhouse gases in atmosphere
Correct rate of change in greenhouse gases in atmosphere
Correct poleward heat transport in atmosphere by mid-latitude storms
Correct quantity of forest & grass fires
Correct quantity of sea salt aerosols in troposphere
Correct soil mineralization
Correct quantity of anaeorbic bacteria in the oceans
Correct quantity of aerobic bacteria in the oceans
Correct quantity of anaerobic nitrogen-fixing bacteria in the early oceans
Correct quantity, variety, and timing of sulfate-reducing bacteria
Correct quantity of geobacteraceae
Correct quantity of aerobic photoheterotrophic bacteria
Correct quantity of decomposer bacteria in soil
Correct quantity of mycorrhizal fungi in soil
Correct quantity of nitrifying microbes in soil
Correct quantity & timing of vascular plant introductions
Correct quantity, timing, & placement of carbonate-producing animals
Correct quantity, timing, & placement of methanogens
Correct phosphorus and iron absorption by banded iron formations
Correct quantity of soil sulfur
Correct ratio of electrically conducting inner core radius to radius of the adjacent turbulent fluid shell
Correct ratio of core to shell (see above) magnetic diffusivity
Correct magnetic Reynold’s number of the shell (see above)
Correct elasticity of iron in the inner core
Correct electromagnetic Maxwell shear stresses in the inner core
Correct core precession frequency for planet
Correct rate of interior heat loss for planet
Correct quantity of sulfur in the planet’s core
Correct quantity of silicon in the planet’s core
Correct quantity of water at subduction zones in the crust
Correct quantity of high pressure ice in subducting crustal slabs
Correct hydration rate of subducted minerals
Correct water absorption capacity of planet’s lower mantle
Correct tectonic activity
Correct rate of decline in tectonic activity
Correct volcanic activity
Correct rate of decline in volcanic activity
Correct location of volcanic eruptions
Correct continental relief
Correct viscosity at Earth core boundaries
Correct viscosity of lithosphere
Correct thickness of mid-mantle boundary
Correct rate of sedimentary loading at crustal subduction zones
Correct biomass to comet infall ratio
Correct regularity of cometary infall
Correct number, intensity, and location of hurricanes
Correct intensity of primordial cosmic superwinds
Correct number of smoking quasars
Correct formation of large terrestrial planet in the presence of two or more gas giant planets
Correct orbital stability of large terrestrial planet in the presence of two or more gas giant planets
Correct total mass of Oort Cloud objects
Correct mass distribution of Oort Cloud objects
Correct air turbulence in troposphere
Correct quantity of sulfate aerosols in troposphere
Correct quantity of actinide bioreducing bacteria
Correct quantity of phytoplankton
Correct hydrothermal alteration of ancient oceanic basalts
Correct quantity of iodocarbon-emitting marine organisms
Correct location of dislocation creep relative to diffusion creep in and near the crust-mantle boundary (determines mantle convection dynamics)
Correct size of oxygen sinks in the planet’s crust
Correct size of oxygen sinks in the planet’s mantle
Correct mantle plume production
Correct average rainfall precipitation
Correct variation and timing of average rainfall precipitation
Correct atmospheric transparency
Correct atmospheric pressure
Correct atmospheric viscosity
Correct atmospheric electric discharge rate
Correct atmospheric temperature gradient
Correct carbon dioxide level in atmosphere
Correct rates of change in carbon dioxide levels in atmosphere throughout the planet’s history
Correct rates of change in water vapor levels in atmosphere throughout the planet’s history
Correct rate of change in methane level in early atmosphere
Correct Q-value (rigidity) of planet during its early history
Correct variation in Q-value of planet during its early history
Correct migration of planet during its formation in the protoplanetary disk
Correct viscosity gradient in protoplanetary disk
Correct frequency of late impacts by large asteroids and comets
Correct size of the carbon sink in the deep mantle of the planet
Correct ratio of dual water molecules, (H2O)2, to single water molecules, H 2O, in the troposphere
Correct quantity of volatiles on and in Earth-sized planet in the habitable zone
Correct triggering of El Nino events by explosive volcanic eruptions
Correct time window between the peak of kerogen production and the appearance of intelligent life
Correct time window between the production of cisterns in the planet’s crust that can effectively collect and store petroleum and natural gas and the appearance of intelligent life
Correct efficiency of flows of silicate melt, hypersaline hydrothermal fluids, and hydrothermal vapors in the upper crust
Correct efficiency of ocean pumps that return nutrients to ocean surfaces
Correct sulfur and sulfate content of oceans
Correct orientation of continents relative to prevailing winds
Correct infall of buckminsterfullerenes from interplanetary and interstellar space upon surface of planet
Correct quantity of silicic acid in the oceans
Correct heat flow through the planet’s mantle from radiometric decay in planet’s core
Correct water absorption by planet’s mantle

http://lifewellchurch.com/apologetics-4-fine-tuning/

Factors Necessary for a Habitable Planet Supporting Complex Life
Liquid Water
Carbon
Within galactic habitable zone
Circumstellar Habitable Zone
Orbiting main sequence G2 dwarf star
Protected by gas giant planets
Nearly circular orbit
Oxygen rich atmosphere
Correct mass
Orbited by large moon
Magnetic field
Plate tectonics
Ratio of liquid water and continents
Terrestrial planet
Moderate rate of rotation
Probability of every factor randomly coinciding at the same time? 10-15th That’s 1/1,000,000,000,000,000 Or one-one-thousandth of one-one-trillionth… By comparison, there are 100 billion stars in our galaxy. Certainly a large number, but the probability is so small that it makes a habitable planet very unlikely.
Additionally, habitability does not mean life exists necessarily, or is even probable, only that it could be possible.
What are the odds?
What would you think if you were flipping a coin with a friend and it came up heads over and over?
What are the odds of flipping a coin and getting heads 50 times in a row?
1 in a Quadrillion
A quadrillion is a MILLION BILLION 10,000,000,000,000,000 That is 10 to the 15th



Last edited by Admin on Mon Jan 23, 2017 6:59 am; edited 1 time in total

View user profile http://elshamah.heavenforum.com

2 Re: FineTuning of the earth on Mon Jan 23, 2017 6:57 am

Admin


Admin
The Earth…its size is perfect. The Earth’s size and corresponding gravity holds a thin layer of mostly nitrogen and oxygen gases, only extending about 50 miles above the Earth’s surface.If Earth were smaller, an atmosphere would be impossible, like the planet Mercury. If Earth were larger, its atmosphere would contain free hydrogen, like Jupiter.(4) Earth is the only known planet equipped with an atmosphere of the right mixture of gases to sustain plant, animal and human life.The Earth is located the right distance from the sun. Consider the temperature swings we encounter, roughly -30 degrees to +120 degrees. If the Earth were any further away from the sun, we would all freeze. Any closer and we would burn up.Even a fractional variance in the Earth’s position to the sun would make life on Earth impossible. The Earth remains this perfect distance from the sun while it rotates around the sun at a speed of nearly 67,000 mph. It is also rotating on its axis, allowing the entire surface of the Earth to be properly warmed and cooled every day.

And our moon is the perfect size and distance from the Earth for its gravitational pull. The moon creates important ocean tides and movement so ocean waters do not stagnate, and yet it restrains our massive oceans from spilling over across the continents.

Water…colorless, odorless and without taste, and yet no living thing can survive without it. Plants, animals and human beings consist mostly of water (about two-thirds of the human body is water). You’ll see why the characteristics of water are uniquely suited to life…It has an unusually high boiling point and freezing point. Water allows us to live in an environment of fluctuating temperature changes, while keeping our bodies a steady 98.6 degrees.Water is a universal solvent. Take a full glass of water, add a cup of sugar, and nothing spills over the edge; the water simply absorbs the sugar. This property of water means that thousands of chemicals, minerals and nutrients can be carried throughout our bodies and into the smallest blood vessels.(6)Water is also chemically inert. Without affecting the makeup of the substances it carries, water enables food, medicines and minerals to be absorbed and used by the body.Water has a unique surface tension. Water in plants can therefore flow upward against gravity, bringing life-giving water and nutrients to the top of even the tallest trees.
Water freezes from the top down and floats, so fish can live in the winter.Ninety-seven percent of the Earth’s water is in the oceans. But on our Earth, there is a system designed which removes salt from the water and then distributes that water throughout the globe. Evaporation takes the ocean waters, leaving the salt, and forms clouds which are easily moved by the wind to disperse water over the land, for vegetation, animals and people. It is a system of purification and supply that sustains life on this planet, a system of recycled and reused water.

The energy coming in from the Sun must be returned to space to keep Earth from overheating. In fact, the Earth sends exactly as much heat out to space as it receives from the Sun (plus a tiny bit more corresponding to Earth's own heat production, from radioactive decay). About 30 percent of the incoming radiation is simply reflected. The reflectivity of a planet is called its "albedo". Venus has a very high albedo (that is why that planet is so brilliant), while Earth has an intermediate one. Clouds and snowfields are especially efficient in reflecting sunlight. What is not reflected (70 percent) is absorbed in the atmosphere and on the ground, and is then re-radiated to space by the warmed objects, in the infrared portion of the spectrum (that is, as heat radiation). How is this balance maintained? Earth warms up to exactly the temperature that is necessary to re-radiate exactly the right amount of energy. 3

1. http://blogs.christianpost.com/creationvsevolution/was-the-earth-fine-tuned-for-life-1336/
2. http://powertochange.com/students/godexist1/
3. http://earthguide.ucsd.edu/virtualmuseum/ita/07_1.shtml

View user profile http://elshamah.heavenforum.com

3 Re: FineTuning of the earth on Tue Jun 20, 2017 4:03 am

Admin


Admin
Continents, essential for advanced life on earth 1

A carbon cycle, at least the planetary variety, needs both continents and oceans. Continents serve as a mixing bowl for minerals and water at the surface, where energy-rich sunlight is available. The continents began to appear about one billion years after Earth formed. As they grew, they and the crust they ride on extracted potassium, thorium, and uranium from the mantle. Because these radioisotopes have been the primary sources of heat in Earth’s interior over most of its history, siphoning them from the convecting mantle weakens tectonic activity. If the continents and crust had grown more rapidly, they would have drawn more heat-producing elements from the mantle. This would have slowed down mantle convection and tectonic activity in recent times, resulting in poorer climate feedback. Plate tectonics plays another life-essential role: it maintains dry land in the face of constant erosion. A large rocky planet like Earth wants to be perfectly round, with erosion eventually wearing down the mountains and even the continents, creating a true “waterworld.” Its interior must continuously supply energy to keep it from getting bowling-ball smooth. Without geological recycling, such a place would probably become lifeless, since it would lack a way to mix all the life-essential nutrients in its sunlight- drenched surface waters.

1. A privileged planet, Gonzalez, page 57



Last edited by Admin on Tue Jun 20, 2017 6:07 am; edited 2 times in total

View user profile http://elshamah.heavenforum.com

4 Re: FineTuning of the earth on Tue Jun 20, 2017 4:24 am

Admin


Admin
The  Earth’s Magnetic Field

The earth’s magnetic field is critically important for at least two reasons:

it provides protection for life from high-energy particles originating from both cosmic rays and from our sun, and  it provides a shield preventing the depletion of our atmosphere from bombardment by the stream of charged particles ejected from the sun. 5 Because Earth rotates once every 24 hours, this motion causes its iron core to generate a strong magnetic field. This magnetic field shields Earth from cosmic rays, in addition to protecting Earth’s atmosphere from the solar wind. 6

The evidence of the plasma shield
1. In Science Magazine, a team of geophysicists found another way that the earth’s magnetosphere protects life on the surface.  When high-energy ions in the solar wind threaten to work their way through cracks in the magnetosphere, Earth sends up a “plasma plume” to block them. The automatic mechanism is described on New Scientist as a “plasma shield” that battles solar storms.
2. Joel Borofsky from Space Science Institute says, “Earth doesn’t just sit there and take whatever the solar wind gives it, it can actually fight back.”
3. Earth’s magnetic shield can develop “cracks” when the sun’s magnetic field links up with it in a process called “reconnection.”  Between the field lines, high-energy charged particles can flow during solar storms, leading to spectacular auroras, but also disrupting ground-based communications.  But Earth has an arsenal to defend itself.  Plasma created by solar UV is stored in a donut-shaped ring around the globe.  When cracks develop, the plasma cloud can send up “tendrils” of plasma to fight off the charged solar particles.  The tendrils create a buffer zone that weakens reconnection.
4. Previously only suspected in theory, the plasma shielding has now been observed. As described by Brian Walsh of NASA-Goddard in New Scientist:
“For the first time, we were able to monitor the entire cycle of this plasma stretching from the atmosphere to the boundary between Earth’s magnetic field and the sun’s. It gets to that boundary and helps protect us, keeps these solar storms from slamming into us.”
5. According to Borofsky this observation is made possible by looking at the magnetosphere from a “systems science” approach.  Geophysicists can now see the whole cycle as a “negative feedback loop” – “that is, the stronger the driving, the more rapidly plasma is fed into the reconnection site,” he explains.  “…it is a system-wide phenomenon involving the ionosphere, the near-Earth magnetosphere, the sunward boundary of the magnetosphere, and the solar wind; and it involves diverse physical processes such as ionospheric outflows, magnetospheric transport, and magnetic-field-line reconnection.”
6. The result of all these complex interactions is another level of protection for life on Earth that automatically adjusts for the fury of the battle:
“The plasmasphere effect is indicative of a new level of sophistication in the understanding of how the magnetospheric system operates. The effect can be particularly important for reducing solar-wind/magnetosphere coupling during geomagnetic storms. Instead of unchallenged solar wind control of the rate of solar-wind/magnetosphere coupling, we see that the magnetosphere, with the help of the ionosphere, fights back.”
7. Because of this mechanism, even the most severe coronal mass ejections (CME) do not cause serious harm to the organisms on the surface of the Earth.
8. The necessary timings when this system should be activated and the whole complex, very important protection system of plasma shield, battling the solar storms is an evidence of intelligent design, for the purpose of maintaining the life of the living entities on the earth planet.
9. This intelligent designer, the creator of such a great system, best explains its existence.

The Creation of the Earth’s Magnetic Field. 1
The iron catastrophe turned out to be a blessing in disguise for the life that was to eventually emerge on Earth. It was one of a myriad number of factors that would later help to ensure the survival of life on the planet, "As the liquid iron swirled around it produced an invisible force that even today helps keep us alive: the Earth’s magnetic field. Convection currents inside the liquid core behaved like a dynamo and generated electric currents. These transformed our planet into a giant magnet with north and south magnetic poles." "Without the liquid iron core the early atmosphere would have been stripped away and life could never have evolved on our planet. That’s because space is lethal. It’s full of highly dangerous solar particles that can be ten times more deadly than the radiation from a nuclear explosion. These particles originate from the sun when it spews out massive solar flares. A devastating solar wind streams towards the Earth at 250 miles per second. That’s a million miles an hour. If it ever reached the surface of our planet it would strip away the atmosphere in a few thousand years. But the Earth’s magnetic field creates a protective shield and deflects the solar particles. Without the molten core, today our planet would be a sterile rocky sphere with little or no atmosphere. The tragic fate that befell our neighboring planet, Mars."

A terrestrial planet with plate tectonics is also more likely to have a strong magnetic field since both depend on convective overturning of its interior. And a strong magnetic field contributes mightily to a planet’s habitability by creating a cavity called the magnetosphere, which shields a planet’s atmosphere from direct interaction with the solar wind. If solar wind particles— consisting of protons and electrons—were to interact more directly with Earth’s upper atmosphere, they would be much more effective at “sputtering” or be stripping it away (especially the atoms of hydrogen and oxygen from water). For life, that would be bad news, since the water would be lost more quickly to space. Just as Star Trek’s Enterprise uses a force field to protect it from incoming photon torpedoes, Earth’s magnetic field serves as the next line of defense against galactic cosmic ray particles, after the Sun’s magnetic field and solar wind deflect the lower-energy cosmic rays. These cosmic ray particles consist of high-energy protons and other nuclei, which, together with highly interacting subatomic particles called mesons, interact with nuclei in our atmosphere. These secondary particles can pass through our bodies, causing radiation damage and breaking up nuclei in our cells.

Invisible hissing doughnut is Earth’s radiation shield 3



The rainbow ring the picture above is full of tiny radioactive missiles traveling close to the speed of light, shown as yellow and blue streaks.  Far above Earth, this high-energy radiation from space can damage satellite electronics and pose serious health risks to astronauts. The particles also constantly charge towards the planet’s surface, but luckily an invisible shield of plasma bent into a doughnut shape by Earth’s magnetic field, shown in green, keeps radiation at bay. There is an absolute limit on how close it can get – a comfortable 11,000 kilometers from the surface. A phenomenon called “plasmaspheric hiss” seems to be responsible: very low-frequency electromagnetic waves just inside the boundary of the plasma shield that sound like hissing static when played through a speaker. “It’s a very unusual, extraordinary, and pronounced phenomenon,” says Foster. “What this tells us is that if you parked a satellite or an orbiting space station with humans just inside this impenetrable barrier, you would expect them to have a much longer lifetime. That’s a good thing to know.”

Protective shield 8

Data gathered by the probes also showed that the radiation belts shield Earth from high-energy particles. "The barrier for the ultrafast electrons is a remarkable feature of the belts," study lead author Dan Baker, of the University of Colorado in Boulder, said in a statement.

In January 2016, scientists revealed that the shape of the belts depends on what type of electron is being studied. This means the two belts are much more complex; depending on what is being observed, they can be a single belt, two separate belts or just an outer belt (with no inner belt at all.)  
Two giant swaths of radiation, known as the Van Allen Belts, surrounding Earth were discovered in 1958. In 2012, observations from the Van Allen Probes showed that a third belt can sometimes appear. The radiation is shown here in yellow, with green representing the spaces between the belts.
Earth is surrounded by giant donut-shaped swaths of magnetically trapped, highly energetic charged particles. These radiation belts were discovered in 1958 by the United States' first satellite, Explorer 1. The discovery was led by James Van Allen at the University of Iowa, which eventually caused the belts to be named after him.
Van Allen's experiment on Explorer 1, which launched Jan. 31, 1958, had a simple cosmic ray experiment consisting of a Geiger counter (a device that detects radiation) and a tape recorder. Follow-up experiments on three other missions in 1958 — Explorer 3, Explorer 4 and Pioneer 3 — established that there were two belts of radiation circling the Earth.
This simple picture of the radiation belts persisted for decades until 2012, when a pair of probes was launched to study them in detail. This was the first time that two spacecraft simultaneously studied the radiation belts, trading information with each other to build a bigger picture.

Early probe findings

Part of the interest in the Van Allen belts comes from where they are located. It is known that the belts can swell when the sun becomes more active. Before the probes launched, scientists thought the inner belt was relatively stable, but when it did expand its influence extended over the orbit of the International Space Station and several satellites. The outer belt fluctuated more often.
The Van Allen Probes (formerly known as the Radiation Belt Storm probes) have several scientific goals, including discovering how the particles — ions and electrons — in the belts are accelerated and transported, how electrons are lost and how the belts change during geomagnetic storms. The mission was planned to last two years, but as of August 2016 the probes were still operating at double the expected mission lifetime.
Usually, scientists take a few months to calibrate their instruments, but a team with the Relativistic Electron Proton Telescope asked that their instrument be turned on almost immediately (three days after launch). Their reasoning was they wanted to compare observations before another mission, SAMPEX (Solar, Anomalous, and Magnetospheric Particle Explorer), de-orbited and entered Earth's atmosphere.
"It was a lucky decision," NASA said in February 2013, noting that a solar storm had already caused the radiation belts to swell as soon as the instrument was turned on. "Then something happened no one had ever seen before: the particles settled into a new configuration, showing an extra, third belt extending out into space," the agency added. "Within mere days of launch, the Van Allen Probes showed scientists something that would require rewriting textbooks."

Protective shield

Data gathered by the probes also showed that the radiation belts shield Earth from high-energy particles. "The barrier for the ultrafast electrons is a remarkable feature of the belts," study lead author Dan Baker, of the University of Colorado in Boulder, said in a statement.
"We're able to study it for the first time, because we never had such accurate measurements of these high-energy electrons before." [Gallery: NASA's Van Allen Probes]

Complex configuration

This new information helped scientists model the belts' changes. But there was more information to come. In January 2016, scientists revealed that the shape of the belts depends on what type of electron is being studied. This means the two belts are much more complex; depending on what is being observed, they can be a single belt, two separate belts or just an outer belt (with no inner belt at all.)
"The researchers found that the inner belt — the smaller belt in the classic picture of the belts — is much larger than the outer belt when observing electrons with low energies, while the outer belt is larger when observing electrons at higher energies," NASA wrote at the time. "At the very highest energies, the inner belt structure is missing completely. So, depending on what one focuses on, the radiation belts can appear to have very different structures simultaneously."
What is still poorly understood, however, is what happens when particles from the sun hit the belts during a geomagnetic storm. It is known that the number of electrons in the belts changes, either decreasing or increasing depending on the situation. Also, the belts eventually return to their normal shape after the storm passes. NASA said it isn't clear what kind of storm will cause a specific type of belt configuration. Also, the agency noted, any previous observations were done only with electrons at a few energy levels. More work needs to be done.
Luckily, scientists got the chance to observe a storm up close in March 2015, when one of the Van Allen probes happened to be situated inside the "right" spot in Earth's magnetic field to see an interplanetary shock. NASA describes such shocks as similar to when a tsunami is triggered by an earthquake; in this case, a coronal mass ejection of charged particles from the sun creates a shock in specific areas of the belts.
"The spacecraft measured a sudden pulse of electrons energized to extreme speeds — nearly as fast as the speed of light — as the shock slammed the outer radiation belt," NASA wrote at the time. "This population of electrons was short-lived, and their energy dissipated within minutes. But five days later, long after other processes from the storm had died down, the Van Allen probes detected an increased number of even higher energy electrons. Such an increase so much later is a testament to the unique energization processes following the storm."


Van Allen Probes Spot an Impenetrable Barrier in Space 7



The Van Allen belts are a collection of charged particles, gathered in place by Earth’s magnetic field. They can wax and wane in response to incoming energy from the sun, sometimes swelling up enough to expose satellites in low-Earth orbit to damaging radiation. The discovery of the drain that acts as a barrier within the belts was made using NASA's Van Allen Probes, launched in August 2012 to study the region. A paper on these results appeared in the Nov. 27, 2014, issue of Nature magazine.

“This barrier for the ultra-fast electrons is a remarkable feature of the belts," said Dan Baker, a space scientist at the University of Colorado in Boulder and first author of the paper. "We're able to study it for the first time, because we never had such accurate measurements of these high-energy electrons before."
Understanding what gives the radiation belts their shape and what can affect the way they swell or shrink helps scientists predict the onset of those changes. Such predictions can help scientists protect satellites in the area from the radiation.
The Van Allen belts were the first discovery of the space age, measured with the launch of a US satellite, Explorer 1, in 1958. In the decades since, scientists have learned that the size of the two belts can change – or merge, or even separate into three belts occasionally. But generally the inner belt stretches from 400 to 6,000 miles above Earth's surface and the outer belt stretches from 8,400 to 36,000 miles above Earth's surface.
A slot of fairly empty space typically separates the belts. But, what keeps them separate? Why is there a region in between the belts with no electrons?
Enter the newly discovered barrier. The Van Allen Probes data show that the inner edge of the outer belt is, in fact, highly pronounced. For the fastest, highest-energy electrons, this edge is a sharp boundary that, under normal circumstances, the electrons simply cannot penetrate.
"When you look at really energetic electrons, they can only come to within a certain distance from Earth," said Shri Kanekal, the deputy mission scientist for the Van Allen Probes at NASA's Goddard Space Flight Center in Greenbelt, Maryland and a co-author on the Nature paper. "This is completely new. We certainly didn't expect that."
The team looked at possible causes. They determined that human-generated transmissions were not the cause of the barrier. They also looked at physical causes. Could the very shape of the magnetic field surrounding Earth cause the boundary? Scientists studied but eliminated that possibility. What about the presence of other space particles? This appears to be a more likely cause.
This animated gif shows how particles move through Earth’s radiation belts, the large donuts around Earth. The sphere in the middle shows a cloud of colder material called the plasmasphere. New research shows that the plasmasphere helps keep fast electrons from the radiation belts away from Earth.
The radiation belts are not the only particle structures surrounding Earth. A giant cloud of relatively cool, charged particles called the plasmasphere fills the outermost region of Earth's atmosphere, beginning at about 600 miles up and extending partially into the outer Van Allen belt. The particles at the outer boundary of the plasmasphere cause particles in the outer radiation belt to scatter, removing them from the belt.
This scattering effect is fairly weak and might not be enough to keep the electrons at the boundary in place, except for a quirk of geometry: The radiation belt electrons move incredibly quickly, but not toward Earth. Instead, they move in giant loops around Earth. The Van Allen Probes data show that in the direction toward Earth, the most energetic electrons have very little motion at all – just a gentle, slow drift that occurs over the course of months. This is a movement so slow and weak that it can be rebuffed by the scattering caused by the plasmasphere.
This also helps explain why – under extreme conditions, when an especially strong solar wind or a giant solar eruption such as a coronal mass ejection sends clouds of material into near-Earth space – the electrons from the outer belt can be pushed into the usually-empty slot region between the belts.
"The scattering due to the plasmapause is strong enough to create a wall at the inner edge of the outer Van Allen Belt," said Baker. "But a strong solar wind event causes the plasmasphere boundary to move inward."
A massive inflow of matter from the sun can erode the outer plasmasphere, moving its boundaries inward and allowing electrons from the radiation belts the room to move further inward too.

An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts 4
Here we analyze an extended data set that reveals an exceedingly sharp inner boundary for the ultrarelativistic electrons. Additional, concurrently measured data reveal that this barrier to inward electron radial transport does not arise because of a physical boundary within the Earth’s intrinsic magnetic field and that inward radial diffusion is unlikely to be inhibited by scattering by an electromagnetic transmitter wave fields. Rather, we suggest that exceptionally slow natural inward radial diffusion combined with weak, but persistent, wave–particle pitch angle scattering deep inside the Earth’s plasmasphere can combine to create an almost impenetrable barrier through which the most energetic Van Allen belt electrons cannot migrate.

1. http://carbonomics.net/MCcarbon/Carbonomics/13c10/13c10c.html
2. A privileged planet, Gonzalez, page 57
3. https://www.newscientist.com/article/dn26631-invisible-hissing-doughnut-is-earths-radiation-shield/#.VHshl2dpqClv
4. http://www.nature.com.ololo.sci-hub.cc/nature/journal/v515/n7528/full/nature13956.html
5. http://www.reasons.org/articles/magnetic-field-of-the-earth
6. http://www.reasons.org/articles/a-planet%E2%80%99s-magnetic-field-protects-its-water
7. https://www.nasa.gov/content/goddard/van-allen-probes-spot-impenetrable-barrier-in-space
8. https://www.space.com/33948-van-allen-radiation-belts.html

View user profile http://elshamah.heavenforum.com

5 The earth's size and mass on Tue Jun 20, 2017 11:09 am

Admin


Admin
The earth's size and mass, fine tuned for life

A privileged planet, Gonzalez:

Also vitally important is a planet’s mass. A planet’s habitability depends on its mass in many ways; terrestrial planets significantly smaller or larger than Earth are probably less habitable. Because its surface gravity is weaker, a less massive Earth twin would lose its atmosphere more quickly, and because of its larger surface-area-to-volume ratio, its interior might cool too much to generate a strong magnetic field. Smaller planets also tend to have more dangerously erratic orbits. In contrast, without getting more habitable, a more massive Earth-twin would have a larger initial inventory of water and other volatiles, such as methane and carbon dioxide, and would lose less of them over time. Such a planet might resemble the gas giant Jupiter rather than our terrestrial Earth. In fact, Earth may be almost as big as a terrestrial planet can get. While life needs an atmosphere, too much atmosphere can be bad. For example, high surface pressure would slow the evaporation of water and dry the interiors of continents. It would also increase the viscosity of the air at the surface, making it more difficult for big-brained, mobile creatures like us to breathe. In addition, more surface gravity would create less surface relief, with smaller mountains, and shallower seas. Even with more vigorous tectonic churning, rocks could not support mountains as high as those we enjoy. The planet probably would be covered by oceans and too mineral-starved at the surface (and too salty throughout) to support life. Even a gilled Kevin Costner, cast as a lone mariner, would find such a waterworld unappealing. To add insult to injury, the surface gravity of a terrestrial planet increases with mass more rapidly than you might guess. Intense pressures compress the material deep inside, so that a planet just twice the size of Earth would have about fourteen times its mass and 3.5 times its surface gravity. This higher compression would probably result in a more differentiated planet; gases like water vapor, methane, and carbon dioxide would tend to end up in the atmosphere. Earth has kept dry land throughout its history, in part, because some of its water has been sequestered in the mantle; in contrast, a more massive planet would probably have degassed more than Earth. Maybe you’re still pining away for some adventure on a sci-fi–inspired giant terrestrial planet, but there’s another problem with larger planets— impact threats. To put it simply, they’re bigger targets. Asteroids and comets have a really hard time avoiding larger planets, so these planets suffer more frequent high-speed collisions. While their bigger surfaces distribute the greater impact energy over more area, this doesn’t compensate for the larger destructive energy, since surface area increases slowly with mass for terrestrial planets more massive than Earth. Not only would both smaller and larger terrestrial planets probably be less livable than Earth, but they would also offer poorer overall platforms for discovery. While smaller planets would have taller mountains, providing a better view of the stars, they would have fewer earthquakes, delaying discoveries in geophysics. Smaller planets also provide a smaller, less effective platform for VLBI (very long baseline interferometry) radio observations— which require distant telescopes on different continents—and a smaller “lowest rung on the distance ladder,” which we’ll discuss later. A planet larger than Earth would probably have more tectonic activity, but it would have smaller mountains and a thicker atmosphere, which would hinder astronomy. On Earth, the atmosphere is not an insurmountable problem. Mountain observatories equipped with large optics, like the Keck telescopes on Mauna Kea or the Very Large Telescope in South America, can achieve a spatial resolution rivaling that of the Hubble Space Telescope. From their home on Earth’s surface, scientists can learn about Earth’s interior and the distant stars more efficiently than would observers on planets of quite different sizes.

View user profile http://elshamah.heavenforum.com

Sponsored content


View previous topic View next topic Back to top  Message [Page 1 of 1]

Permissions in this forum:
You cannot reply to topics in this forum