Intelligent Design, the best explanation of Origins

This is my personal virtual library, where i collect information, which leads in my view to Intelligent Design as the best explanation of the origin of the physical Universe, life, and biodiversity


You are not connected. Please login or register

Intelligent Design, the best explanation of Origins » Molecular biology of the cell » Metabolism » the origin of mitochondria

the origin of mitochondria

View previous topic View next topic Go down  Message [Page 1 of 1]

1 the origin of mitochondria on Thu Mar 27, 2014 11:03 pm

Admin


Admin
Wiki - Mitochondria

The mitochondrion (plural mitochondria) is a membrane-bound organelle found in most eukaryotic cells (the cells that make up plants, animals, fungi, and many other forms of life). These structures are sometimes described as "cellular power plants" because they generate most of the cell's supply of adenosine triphosphate (ATP), used as a source of chemical energy. In addition to supplying cellular energy, mitochondria are involved in other tasks such as signaling, cellular differentiation, cell death, as well as the control of the cell cycle and cell growth.

Several characteristics make mitochondria unique. The number of mitochondria in a cell varies widely by organism and tissue type. Many cells have only a single mitochondrion, whereas others can contain several thousand mitochondria. The organelle is composed of compartments that carry out specialized functions. These compartments or regions include the outer membrane, the intermembrane space, the inner membrane, and the cristae and matrix. Mitochondrial proteins vary depending on the tissue and the species. In humans, 615 distinct types of proteins have been identified from cardiac mitochondria, whereas in rats, 940 proteins have been reported.The mitochondrial proteome is thought to be dynamically regulated. Although most of a cell's DNA is contained in the cell nucleus, the mitochondrion has its own independent genome. Further, its DNA shows substantial similarity to bacterial genomes.


http://www.evolutionnews.org/2012/01/on_the_origin_o054891.html


http://www.origin-of-mitochondria.net/?p=41

Bacterial cell membranes

http://www.origin-of-mitochondria.net/?p=205



Last edited by Admin on Sun Jun 15, 2014 8:58 am; edited 3 times in total

View user profile http://elshamah.heavenforum.com

Admin


Admin
Recent, Functionally Diverse Origin for Mitochondrial Genes from ~2700 Metazoan Species

http://www.answersingenesis.org/articles/arj/v6/n1/mitochondrial-genes

Abstract


The young-earth creation model currently lacks a robust explanation for molecular diversity. No comprehensive method exists by which absolute or relative sequence differences among species can be predicted, and no method has been formulated to rigorously predict the function of molecular residues, especially those in so-called “house-keeping” proteins. In this study, I derived a method to predict the function of molecular differences between biblical “kinds.” Applying this method to the mitochondrial “house-keeping” protein sequences of ~2700 species, I found that differences among “kinds” were not due to neutral changes since creation, but were explicable in functional terms. This finding has implications for the mechanisms and feasibility of species’ change. Conversely, I also found that absolute genetic differences within a “kind” were predictable to a first approximation by modern mutation rates and the young-earth timescale. These data provide a compelling alternative to old-earth and evolutionary explanations for molecular diversity, and they challenge the millions-of-years timescale common to these models.

View user profile http://elshamah.heavenforum.com

3 Re: the origin of mitochondria on Sat Jul 11, 2015 8:13 am

Admin


Admin
On the Origin of Mitochondria: Reasons for Skepticism on the Endosymbiotic Story

http://reasonandscience.heavenforum.org/t1465-evidence-against-mitochondrial-endosymbiosis#2130

http://www.evolutionnews.org/2012/01/on_the_origin_o054891.html#sthash.7fllKWEP.dpuf

Such an evolutionary transition is far from trivial. Biologist Albert de Roos writes,

   In linear mitochondrial chromosomes various different mechanisms to "prevent" shortening exist, ranging from hairpin loops and self-priming to protein-assisted primer synthesis . The telomeric regions of mitochondrial chromosomes do not seem to have a direct phylogenetic relation since they use other proteins and mechanisms than nuclear telomeres. Thus, it is difficult to deduce evolutionary pathways purely based on phylogenetic data on telomeres and mechanisms for end replication.


The claim one often hears is that circular mitochondrial DNA replication resembles bacterial binary fission. While this is true, in at least some respects, there are also important differences. For example, many of the key components are of eukaryotic origin and replication beginning at the Displacement (D-) loop (Fish et al., 2004; Clayton, 1996) is not the same as bacterial DNA replication.

The Lack of a Mechanism

http://www.uncommondescent.com/intelligent-design/on-the-non-evidence-for-the-endosymbiotic-origin-of-the-mitochondria

By far the most potent challenge to the endosymbiotic origin of eukaryotic mitochondria is the lack of a viable mechanism, perhaps most particularly with respect to the transfer of genes from the mitochondrion to the nucleus.

All evolutionary theories must offer an explanation in mechanistic terms of how it should or could have happened in order to be tested. The difficult thing with the endosymbiotic theory is that it proposes no real mechanism and most textbooks show the simplistic picture of a cell that swallows another cell that becomes a mitochondrion. Unfortunately, it is not so simple as that. There is a difference between the process of endosymbiosis and its incorporation in the germline, necessitating genetic changes. What were those changes? What was the host? Was it a fusion, was it engulfment, how did the mitochondrion get its second membrane, how did two genomes in one cell integrate and coordinate? The theory is also strongly teleological, illustrated by the widely used term 'enslavement'. But how do you enslave another cell, how do you replace its proteins and genes without affecting existing functions? The existence of obligate bacterial endosymbionts in some present eukaryotes is often presented as a substitute for a mechanism, but they remain bacteria and give not rise to new organelles. So, before we can speak of the endosymbiotic as a testable scientific theory, we need a mechanistic scenario which is lacking at the moment.

When we do try to envision a mechanistic scenario based on the endosymbiotic theory, we quickly run into problems. Genetic mutations that allow bacteria to thrive in the cytoplasm would not be strategic for survival. Anaerobic cells normally do not survive in environment that contains oxygen, while the endosymbiont would need oxygen in order to present fitness advantage. The two organisms would initially compete for energy sources since bacteria are users of ATP and do not export it. The extensive gene transfer that is needed in the endosymbiotic theory would wreak havoc in a complex genome since frequent insertion of random pieces of mitochondrial DNA would disrupt existing functions. Furthermore, gene transfer is a multi-step process were genes need to be moved to the nucleus, the different genetic code of mitochondria needs to be circumvented, the genes need to be expressed correctly, as well as imported back into the mitochondria in order to be functional. All in all, mechanistic scenarios for the endosymbiotic theory imply many non-functional intermediates or would just be plain harmful to an organism.



It is frequently asserted that the double membrane of mitochondria provides evidence for its endosymbiotic origin. There are, however, important differences between bacterial and mitochondrial membranes. Albert de Roos observes,

   The bacterial membrane is one of the basic characteristics that distinguish bacteria from eukaryotes. In order for mitochondria to resemble bacterial membranes, they should share characteristics such as a cell wall with peptidoglycan and lipopolysaccharides, gram-staining and antibiotic sensitivity. Some effects of antibiotics have been seen with both bacteria and mitochondria, but the effect is minor while the use of antibiotics is based on the principle that they distinguish between bacteria and eukarytes, including the mitochondrion (here). Until then, the selection of a few apparent similarities while ignoring the many differences does not indicate a bacterial origin for mitochondria. On the contrary, the fact that their membranes are so different as well as the fact that nearly all genes are encoded by the nucleus is primarily evidence against a bacterial origin.

   Even though some shared characteristics may be found, we have to realize that bacterial and eukaryotic membranes are fundamentally different. It seems virtually impossible to change all fundamental bacterial membrane characteristics and replace them with a eukaryotic counterpart without loosing membrane integrity. The differences between the membranes of mitochondria and the cell walls of bacteria make the endosymbiotic theory mechanistically difficult. It seems quite clear that bacterial membranes do not change easily into other membranes, and frankly I don't see any scenarios in which to change all these membrane components without drastically affecting fitness.


The Size and Shape of Mitochondria

The argument based on the size and shape of mitochondria is one that has been turned on its head in recent years, being transformed from an argument for endosymbiosis to one against it. These organelles are now acknowledged in the literature to be better understood as dynamic reticular structures (see this link for references).

Electron micrographs displaying cross-sections of mitochondria portrayed the mitochondrion as a sphere. However, when one looks at 3D models of the organelle, the reality is somewhat different.

View user profile http://elshamah.heavenforum.com

Sponsored content


View previous topic View next topic Back to top  Message [Page 1 of 1]

Permissions in this forum:
You cannot reply to topics in this forum